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Introducing GPU Code Generation with MATLAB
GPU computing is contributing to the growth of deep learning applications because it enables parallel computations 
of data on a massive scale. GPU computing accelerates your applications by taking advantage of the data parallelism 
in your algorithms. This is key to meeting performance goals for computationally intensive algorithms in areas such 
as embedded vision and radar as well as deep learning. 

GPU-accelerated computing follows a heterogeneous programming model; the portions of your application that can 
be parallelized are mapped to kernels that execute concurrently across the hundreds or thousands of parallel cores 
on the GPU, while the sequential portions of the code run on the CPU. 

GPU Coder™ accelerates your existing MATLAB® algorithms on GPUs by automatically generating CUDA® code 
from MATLAB code for execution on NVIDIA® GPUs. The generated CUDA code is optimized for parallelism, 
while minimizing the overhead of data transfer between the CPU and GPU. During code generation, GPU Coder 
analyzes the data dependency between the CPU and GPU partitions. This analysis determines the minimum set of 
locations where data must be copied between the CPU and GPU. The memory bandwidth bottleneck between the 
CPU and the GPU is a key reason for algorithms to lose performance speed on GPUs; the ability to minimize data 
transfer results in significant performance gains. An automated workflow avoids the hassle and increased errors that 
can come from hand coding in CUDA. 

GPU Coder accelerates your algorithm on GPUs running on desktops, the cloud, or embedded devices, including 
NVIDIA Jetson® and NVIDIA Drive® platforms. Figures 1 and 2 highlight these performance improvements. 
Applications can realize up to two orders of magnitude in performance improvements for common image processing 
operations such as surf feature extraction, stereo disparity, and fog removal, and common signal processing opera-
tions such as FFT. 

Figure 1. Common image processing and signal processing performance benchmarks for GPU Coder–generated CUDA code running  
on GPUs compared with C code running on CPUs.

Testing Platform MATLAB 2018a

CPU Intel Xeon CPU E5-1650 v3 @ 3.50 GHz

GPU NVIDIA Pascal TITAN V (Volta architecture)

CUDA Version 9.0

https://www.mathworks.com/products/gpu-coder.html/
https://www.mathworks.com/products/matlab/
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Figure 2 shows the inference performance of the CUDA code generated from GPU Coder compared with other pop-
ular deep learning frameworks. The code generated by GPU Coder runs five times faster than TensorFlow™ and 
twice as fast as Apache MXNet. 

Figure 2. Deep learning performance benchmarks: AlexNet inference performance comparison of GPU Coder, TensorFlow,  
and MXNet running on NVIDIA Titan® Xp.

Note that a typical deep learning algorithm consists of user logic that calls one or more trained networks for infer-
ence. With GPU Coder, you can automatically generate code from the complete application, without having to do 
any manual coding. In the case of a very simple image classification task, for example, user logic might include pre-
processing steps such as resizing the image and changing the color space, and postprocessing steps such as drawing a 
bounding box. GPU Coder generates code from the entire application (Figure 3).

Testing Platform MATLAB 2018a

CPU Intel Xeon CPU E5-1650 v4 @ 3.60 GHz

GPU NVIDIA Pascal TITAN Xp

cuDNN v7
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Figure 3. Generating code for the entire end-to-end application using GPU Coder.

High-Level Workflow

Figure 4 shows the typical workflow from algorithm design through code generation to deployment. You begin by 
preparing the MATLAB code for code generation, followed by testing the generated code to ensure it functionally 
behaves the same as the original MATLAB code. In the third step, you can generate code either as a MEX file (to 
replace the original MATLAB algorithm for acceleration purposes) or as CUDA code in the form of source code or a 
static or dynamic library that can be integrated into your larger CUDA project. An optional fourth step is to further 
optimize the MATLAB code to boost performance of the generated code.

Figure 4. Workflow to generate CUDA code from MATLAB code.
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Traffic Sign Detection Application

This section examines the code generation workflow in greater detail using a deep learning–based traffic sign  
detection example. The three basic steps to perform traffic sign detection and recognition are detection, non-maxi-
mal suppression (NMS), and recognition. You can start with a MATLAB algorithm to:

• Read and preprocess a test image 

• Call the prediction method for the object detection network to detect the traffic sign

• Suppress overlapping detections using an NMS algorithm

• Call the prediction method for the recognition network to recognize the sign 

• Display an output image with bounding boxes and corresponding detection labels

To generate CUDA code for this algorithm, you can start by preparing this MATLAB script for code generation.

Preparing MATLAB Code for GPU Code Generation
To prepare a MATLAB algorithm for code generation, you follow these steps:

1. Separate the algorithm from the test bench. Begin by separating the algorithm from the test bench and casting 
the algorithm code as a function. It is also good practice to separate your algorithm into the deep learning net-
work inference function and the pre- and postprocessing functions.

2. Identify computationally intensive portions of the algorithm. Use the MATLAB Profiler to profile and identify 
hotspots in the algorithm. Isolate hotspots into separate functions to help with the next step. 

3. Direct GPU Coder to automatically map hotspots to CUDA kernels. Insert coder.gpu.kernelfun pragmas 
at the beginning of hotspot functions. This directs GPU Coder to analyze and create the most efficient CUDA  
kernels from these computationally expensive functions.

4. Ensure that the algorithm is compatible with code generation. Use the GPU Coder app (Figure 5) to go through 
this process. The app begins by running a code generation readiness tool to detect any code generation compati-
bility issues, including unsupported functions and constructs:

• Unsupported functions: You will need to remove or replace unsupported functions from your MATLAB algo-
rithm in order to generate code.

• Unbounded variable-size data: GPU Coder generates code from variables that are bounded. If the code generator 
cannot determine the size of an array or if it determines that the size changes, then the dimension is variable-size 
(Figure 6). GPU Coder issues a warning for unbounded variables or unbounded variable-size arrays. In this case, 
you need to specify an upper bound so that the coder can allocate the memory statically:

 Ŝ Specify upper bounds for variable-size inputs: Use the coder.typeof construct to specify upper bounds for 
variable-size inputs.

 Ŝ Specify upper bounds for local variables: To constrain the value of variables that specify the dimensions of 
variable-size arrays, use the assert function with relational operators or use the coder.varsize function to 
specify the upper bounds for all instances of a local variable in a function.

5. Checking for potential run-time errors. After checking code generation compatibility, we recommend perform-
ing run-time checks to detect and fix run-time errors. Run CPU run-time checks to confirm memory integrity, 
verify array bounds, and perform dimension checking. Run GPU run-time checks to identify register spills and 
confirm stack size conformance.

https://www.mathworks.com/help/gpucoder/examples/code-generation-for-traffic-sign-detection-and-recognition-networks.html
https://www.mathworks.com/help/gpucoder/examples/code-generation-for-traffic-sign-detection-and-recognition-networks.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/gpucoder/ug/unsupported-functions.html
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Figure 5. GPU Coder app.

Figure 6. The Size field showing the computed maximum size of an array. For variable-size arrays, a colon (:) indicates that a dimension is vari-
able-size, and a question mark (?) indicates that the size is unbounded. 

Preparing the Traffic Sign Detection MATLAB Script for Code Generation

Using the steps above, the first step is separate out the algorithmic code, now named the tsdr function, from the 
test bench script, tsdr _ test.m. When you profile the function in MATLAB, you see that there are no specific 
hotspots to isolate within the function. This means you can map the entire function to the GPU by inserting the 
coder.gpu.kernelfun pragma into the tsdr function. The GPU Coder app did not identify unsupported  
functions, but it did show that the function has an unbounded variable-size array. So you need to use  
coder.varsize to specify an upper bound (Figure 7). Run-time checks for both CPU and GPU complete  
successfully without any errors.

%% Run Non-Maximal Suppression on the detected bounding boxes

coder.varsize('selectedBbox',[98, 4],[1 0]);

[selectedBbox,~] = selectStrongestBbox(round(boxes),probs);
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%% Recognition

persistent recognitionnet;

if isempty(recognitionnet) 

    recognitionnet = coder.loadDeepLearningNetwork('RecognitionNet.mat', ...  

        'Recognition');

end

coder.varsize('idx',98,1);

idx = zeros(size(selectedBbox,1),1);

inpImg = coder.nullcopy(zeros(48,48,3,size(selectedBbox,1)));

Figure 7. Specifying the upper bounds for the variable-size arrays using coder.varsize.

Testing Generated MEX
Now that the code is ready for code generation, you should first test the generated MEX within MATLAB to ensure 
it behaves functionally the same as the original MATLAB code. To do this, you generate a MEX function. MEX is a 
wrapper interface that lets you call the compiled binary in MATLAB and use it in place of the original MATLAB 
function to verify that it behaves in the same way as the original MATLAB function.

In the GPU Coder app, choose MEX as the build type to generate CUDA code (Figure 8) and compile it using 
NVIDIA’s nvcc compiler into a MEX function. By calling the MEX function from the test bench in the verify code 
step, you can verify that the generated code provides the same functionality as the original MATLAB function. 

Figure 8. Selecting build targets in the GPU Coder app and the verify code step.
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In this example application, you generate the MEX target and run the test with the MEX version in the verify code 
step to verify the behavior of the generated code.

By using GPU Coder with Embedded Coder®, you can further verify the numerical behavior of the generated stand-
alone C++ code using software-in-the-loop (SIL) execution to verify the generated code as deployed on your embed-
ded GPU. This enables you to detect any differences between the MEX and the standalone production-quality code.

Generating Code as MEX or Source Code: Deploying on Desktop, Cloud,  
or Embedded GPUs
Once you have verified that the generated MEX function behaves as expected, you can generate standalone C++ code 
or a static library by simply changing the build type option. You can then integrate the generated library into a larger 
application in your development environment and deploy your algorithm to either the desktop or the cloud.

If your objective is to deploy onto embedded platforms such as NVIDIA Jetson or Drive, you can export the CUDA 
source code to the target and build it on the target. For NVIDIA Tegra® development boards such as the Jetson TX2, 
TX1, or TK1, another option is to cross-compile the generated code on your host machine and deploy it to the board 
by copying the executable to the target.

An important use case for generating code with the MEX build type is to accelerate the computational speed in 
MATLAB by calling the compiled binary running on the GPU instead of the native MATLAB function that needs to 
be interpreted. 

Generating Code and Deploying the Traffic Sign Detection Application 

In the traffic sign detection example application, the goal is to deploy the algorithm on the desktop. In this case, you 
choose the build type as source code and generate standalone C++ code that can be integrated into a main file and 
built in an executable. You can even go one step further and generate a static library that can be cross-compiled and 
deployed to a Jetson board.

Tips for Further Optimizing Your Code 
If the generated code does not meet your performance requirements, you can take additional steps and optimizations 
to improve the performance of the generated code:

• Using profile MEX. To identify bottlenecks in the performance of the generated code, you can profile execution 
times for the generated MEX function by using the MATLAB Profiler. The profile for the generated code shows 
the number of calls and the time spent for each line of the corresponding MATLAB function. Certain bottlenecks 
could be addressed by making a few modifications to your MATLAB algorithm or by tuning the code generation 
options; we have listed a few techniques below.

• Using the coder.gpu.kernel pragma. If some parallel loops in your algorithm have not be parallelized in 
parts of the generated code, you can insert the coder.gpu.kernel pragma immediately before a loop to force 
GPU Coder to generate a kernel for the loop. Note this is an advanced maneuver and should be used with caution. 

https://www.mathworks.com/products/embedded-coder/
https://www.mathworks.com/help/gpucoder/gs/gpucoder-verification.html#mw_7a59aa4b-0855-4196-800b-51796681ed16
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• Using design patterns. For certain algorithms where a given input element is accessed repeatedly for computing 
multiple neighboring output elements, you can use design patterns such as stencil operations  
(gpucoder.stencilKernel) or matrix-matrix operations (gpucoder.matrixMatrixKernel) to improve 
computation efficiency. These design patterns leverage the GPU’s shared memory to boost performance. See the 
design pattern documentation for details.

• Inserting custom CUDA code. In scenarios where you have highly optimized CUDA code for certain subfunc-
tions that you want to incorporate into your generated code, GPU Coder extends the coder.ceval functionality 
to help you integrate your custom code with the code generated by GPU Coder. See the documentation on legacy  
code integration for details.

• Customizing code generation options. You can customize the code generation configuration to further tune the 
code generation for your specific requirements with options such as:

 Ŝ Setting the memory allocation mode, where you choose between discrete and unified memory allocation

 Ŝ Enabling support for CUDA libraries such as cuBLAS and cuSOLVER

 Ŝ Specifying the compute capability of the target

 Ŝ Passing additional flags to the GPU compiler

Next Steps
• Explore: GPU Code Generation from MATLAB

• Download: GPU Coder Trial

https://www.mathworks.com/help/gpucoder/ug/design-patterns.html
https://www.mathworks.com/help/gpucoder/ug/calling-device-functions-from-kernels.html
https://www.mathworks.com/help/gpucoder/ug/calling-device-functions-from-kernels.html
https://www.mathworks.com/products/gpu-coder/code-examples.html
https://www.mathworks.com/campaigns/products/trials.html?prodcode=GC

