
1 Reprinted from MathWorks News&Notes | 2 0 1 0 	 w w w.mathworks.com

PID Control Design Made Easy
By Murad Abu-Khalaf, Rong Chen, and Arkadiy Turevskiy

Tuning a PID controller appears easy, requiring you to find just

three values: proportional, integral, and derivative gains. In fact, safely and

systematically finding the set of gains that ensures the best performance

of your control system is a complex task. Traditionally, PID controllers are

tuned either manually or using rule-based methods. Manual methods are

time-consuming, and if used on the hardware, can cause damage. Rule-based

methods do not support unstable plants, high-order plants, or plants with

little or no time delay. PID control also involves design and implementation

challenges, such as discrete-time implementation and fixed-point scaling.

Using a four-bar linkage system as an
example, this article describes a method
that simplifies and improves the design and
implementation of PID controllers. This
method is based on the PID Controller
blocks in Simulink® and the PID tuning
algorithm in Simulink Control Design™.

The Four-Bar Linkage System:
Control Design Goals
Four-bar linkage (Figure 1) is used in a
wide range of applications, including car
suspensions, robot actuators, and aircraft
landing gears.

The control system consists of two ele-
ments: feedforward control and feedback
PID control. Feedforward control inverts
plant dynamics—it handles the major mo-
tion of the mechanism by taking into ac-
count the nonlinear behavior. Feedback

on the design of feedback PID control.
The PID controller takes the error signal

between the desired and actual rotation an-

PID control keeps positioning errors small
in the face of modeling uncertainties and
external disturbances. This article focuses

Figure 1. Four-bar linkage mechanism, with the stationary lower link shown in blue.

MathWorks News&Notes

2w w w.mathworks.com 	 Reprinted from MathWorks News&Notes | 2 0 1 0

gle of one of the links and creates a torque
request (Figure 2). This request is added to
the torque request from the feedforward
controller, and the sum signal is used to
drive a DC motor that actuates rotation of
the joint connecting the links. The control-
ler must stabilize the operation of the plant.
It must also provide fast response time and
little overshoot. Because the controller will
be implemented on a fixed-point processor
with 16 bits, it needs to be in discrete-time
form, and the gains and calculated signals
must be scaled accordingly.

Configuring the Closed-Loop
System and Tuning the Controller
The plant model consists of a four-bar link-
age mechanism modeled in SimMechanics™
and a DC motor modeled in SimElectronics®.
To create the controller architecture shown in
Figure 2, we simply add a discrete-time PID
Controller block from the Simulink Discrete
library. With the closed-loop system config-
ured, we are ready to tune the controller.

To do that, we open the PID Controller
block dialog box, specify controller sam-
pling time, and press “Tune” to open the

taken into account. Using an automatic
tuning method, Simulink Control Design
then generates the initial gains of the PID
controller. This tuning method imposes
no limits on plant order or time delay, and
it works in both continuous and discrete
time domains.

PID Tuner (Figure 3). Simulink Control
Design linearizes the plant at the current
operating point and derives the linear
time invariant (LTI) plant model seen
by the PID Controller block in this feed-
back control loop. Computational delay
associated with sampling is automatically

Figure 2. Four-bar linkage system controller architecture.

Figure 3. PID Tuner, opened from the block dialog box.

Add Plant Model

angle
measurement

PID Torque
Request

PID Controller

PID(z)
angle
request

error

feed forward control torque request

Feedforward Control:
Inverse Dynamics

Generic Motion
Example

Motion MotionTorque

3 Reprinted from MathWorks News&Notes | 2 0 1 0 	 w w w.mathworks.com

Figure 4 shows the setpoint tracking re-
sponse of the closed-loop system with this
initial PID design. If the controller perfor-
mance is satisfactory, we press “Apply” to
update the values of P, I, D, and N gains in
the PID Controller block dialog box. We
can then test the performance of our de-
sign by simulating the nonlinear model and
looking at the results (Figure 5). We can
also tune our design interactively using a
simple slider to make the controller faster
or slower (Figure 4).

Preparing for Implementation
To prepare the controller for implementa-
tion on a 16-bit microprocessor, we scale it
for the fixed-point arithmetic supported by
the chip.

Using the “Data Types” tab in the block
dialog box, we apply the settings required
for fixed-point design (Figure 6). We can
obtain these settings automatically using
the Fixed-Point Tool in Simulink. We then
run the simulation using fixed-point set-
tings to verify that the fixed-point design
results closely match the results we obtained
when the controller gains and signals were
implemented as double-precision values.

Generating Production Code
With the PID controller prepared for imple-
mentation, the final step is to use Real-Time
Workshop Embedded Coder™ to generate C
code (Figure 7). To test this code, we replace
the PID Controller block with the generated

Figure 4. Initial design generated by the PID Tuner.

Figure 5. Simulation results for the four-bar linkage model.

Figure 6. Fixed-point settings for implement-
ing the PID controller on a processor with 16-bit
fixed-point architecture.

4

C code and run the code in closed-loop sim-
ulation. We can do that by using Real-Time
Workshop Embedded Coder to automati-
cally create a Simulink block that invokes the
generated C code.

We can now run the simulation using the
C code that will run on the actual proces-
sor. Simulation shows that the generated
code produces results that closely match
the results obtained with our PID Con-
troller block with double-precision values
(Figure 8). We can now deploy this code
to the processor and start controlling our
four-bar linkage in real time. ■

ResourcesResources

DEMO: Automated Tuning of Simulink PID Controller Block
www.mathworks.com/pid-tuner

DEMO: Design a Simulink PID Controller (2DOF) Block
for a Reactor
www.mathworks.com/pid-controller

Figure 7. C-code implementation of the 16-bit, fixed-point PID controller. The code is
generated from the PID Controller block.

Figure 8. Simulation results comparing the performance of the generated C code with the perfor-
mance of the double-precision PID Controller block.

Learn More OnlineLearn More Online

© 2010 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

91842v00 11/10

