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Key Points

A. MATLAB package: powerful simulation tool for showcasing R&D engineering challenges for

complex mechanical and aerospace systems

B. Robot position controls in two easy steps:

1. feedback linearization using MATLAB/Symbolic Math Toolbox™

2. tracking control design with MATLAB/Control System Toolbox™ e.g. with the

PID Tuner App™

C. Rigid/flexible robot motion simulation/visualization: easy with Simulink™ and with

Simscape Multibody™

D. Accessible,  affordable simulations-based experimentation for data-driven modeling,

plus some existing numerical tools (e.g. MATLAB/System Identification Toolbox™)

Considerable reduction of time in assessing research-relevant problems! 
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Space Robot Manipulators and Large Satellites:  What do they have in common?

The European Robotic Arm during ground testing

at the European Space Agency in Noordwijk, The Netherlands
The International Space Station during orbital operation
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Space Robot Manipulator Controls: Multidisciplinary Research

Hugues Garnier Alexandre Janot

System Identification
System Identification 

for Robotics

Jean-Philippe Noël

System Identification of 

Aerospace Structures

Valentin Pascu

Control Engineering
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The European Robotic Arm (ERA): Main Characteristics and Specifications

Total length (unloaded): 11.3 m

Degrees of freedom: 7

Total mass (unloaded): 630 kg

Maximum load dimensions:3x3x8.1 m

Maximum moveable mass: 8000 kg

Positioning accuracy (closed-loop): 5 mm

Most time-consuming space robotic manipulator design project to date!
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Space Robot Manipulators: How do they work and what do they do?

Concept snapshot of the ERA during operation

(courtesy of DLR)

Robot motion control implies a certain designer workflow:

1. Desired position (x,y,z) of end-effector

2. Computed trajectory (θ) for robot joints

3. Trajectory tracking with robot actuators (τ)

closed-loop control

model-based 

design

and simulation

experimental verification

R1. Models of robot dynamics

(attitude, structure, actuators)

R2. Measurement priors 

(location, SNR, power spectra)

experimental modellingexperimental validation

Reduce experimental effort through model-based analysis!
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Feedback Linearization of Space Robot Dynamics: Basic Theory
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Euler-Lagrange equation for space robot dynamics:
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for inner-loop linearization/dynamic decoupling.
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Feedback Linearization of Robot Dynamics using Symbolic Calculations

1. definition of real symbolic variables

2. definition of robot dynamics

3. symbolic feedback linearization
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Tracking Controls: Design and Fundamental Limitations
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Desired: good reference tracking i.e.  S(s)<<I and good noise rejection i.e. T(s)<<I. 

Need for choosing a two degree-of-freedom control structure,  using reference and output measurement.

For F(s)=0: standard one degree-of-freedom control loop with the tracking error e:  
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European Robotic Arm: Control Requirements and Design Assumptions

Control task: reference tracking for load positioning (tight control)

Place load from home position e.g. (x,y)=(11.3 m, 0 m) to mission position e.g. (x,y)=(4 m, -1.65 m)

Closed-loop tracking specs: - steady-state in max. 20 seconds (firm)

- no steady-state error, no overshoot (firm)

- motion decoupling between two links (firm)

- link 1 can move slower, if necessary

Design assumptions: - reference trajectory available, given in joint space (0°, 0°) to (45°, -135°)

- one single load with known mass and inertia

- motor torques directly commanded

- rigid body motion only (assumption not met later on)
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Interactive Decoupled Tracking Control Design using the PID Tuning GUI

1. Control 

architecture

2. Closed-loop specs
3. Save design



12

Multibody Dynamics Visualization using Simscape Multibody™

Simulated robot

motion can also 

be visualized

in MATLAB™ 

with little extra 

work!

The control loop can be closed with previously-designed 

Simulink™-based controllers.

Multibody-based simulations can (in)validate previous 

steps!
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Simulating Vibrations in Flexible Multibody Systems

Mechanical vibrations: mathematically modeled with partial differential equations

For simulation and control design - approximate by ordinary differential equations:

• empirically, using e.g. lumped parameter modeling

+ intuitive, simple to implement in multibody modeling software e.g. Simscape Multibody™

- limited accuracy even for fine grids, can be difficult to tune

• numerically, using e.g. finite element analysis

+ accurate method, dedicated software e.g. NASTRAN™, MATLAB/PDEToolbox™

- computationally intensive, specifications not always trivial (e.g. meshing)
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System Identification for Active Vibration Controls

Robot 
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Main idea: design an additional control loop to damp the vibrations using correction torques.

Model of the link flexibility dynamics necessary, best achieved from experimental data.

Main issues: 1. choice of point of excitation, design of excitation (the experiment design problem)

2. choice/design of data-driven modeling approach (the identification method problem)

3. model assessment and uncertainty quantification (the model validation problem)

In line with the control objective (desired closed-loop performance translates to model properties).
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Concluding Remarks

• Model-based analysis with MATLAB™ and Simulink™/Simscape™ greatly accelerates

the research engineering process: extensive, versatile tools (1-2 man-months for ERA)

• Symbolic calculations possible: alternative to pen and paper derivations and allow

avoidance of errors

• Simple, intuitive linear controller design and analysis of results using the available

apps

• Fast prototyping for multibody dynamics (rigid/flexible) using Simulink™/Simscape™

• Algorithms for data-driven modeling available in the MATLAB/System

Identification™ toolbox, regularly updated with validated novel algorithms



16

Related Works and Background Material

Vibration suppression beyond flexible robots – an ubiquitous control challenge:

• improved aeroelastic response of aerospace structures (aircraft, wind turbines)

• improved drivetrain damping (automotive, wind turbines)

• fatigue reduction in large base-fixed structures (wind turbines, civil structures)

Some background material for further reading:

[1] M. W. Spong, S. Hutchinson and M. Vidyasagar – Robot Modeling and Control, Wiley, 2006.

[2] H. Cruijsen et. al –The European Robotic Arm: A High-Performance Mechanism Finally on its Way 

to Space, 42nd Aerospace Mechanics Symposium, NASA Goddard Space Flight Center, 2014.

[3] S. Skogestad and I. Postlethwaite – Multivariable Feedback Control: Analysis and Design, Wiley, 2005.

[4] J.-N. Juang – Identification and Control of Mechanical Systems, Cambridge University Press, 2001.
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Thank you for your attention!

Thank you for your attention!


