

Modular Infrastructure for Rapid Flight Software Development

Craig Pires
NASA Ames Research Center

Overview

- Background
- Flight Software Development Process
- Simulink Model Overview
- Integration with cFE

Background

- Small Spacecraft Investigation
 - Modular Common Bus Spacecraft
- Hover Test Vehicle (HTV) Development
- Current Lunar Atmosphere and Dust Environment Experiment (LADEE)
 - Joint ARC/GSFC Mission
 - Lunar Orbiter, Launch 2012

Hover Test

FSW Process Overview

- Model Based Development Approach
 - Develop Models of FSW, Vehicle, and Environment in Simulink
 - Automatically generate Software using RTW/EC.
 - Integrate with hand-written and heritage software.
 - Iterate while increasing fidelity of tests Workstation Sim (WSIM), Processor-In-The-Loop (PIL), Hardware-in-the-Loop (HIL)

5

Simulink HTV Architecture

Flight Software Model

Flight Hardware Model

Environment Link Model

cFE Simulink Integration

cFE - Core Flight Executive

- Goddard Space Flight Center Developed
- Derived from Legacy Missions
- Flexible infrastructure for Space Flight Software
- Components:
 - Executive Services
 - Event Services
 - Time Services
 - Table Services
 - Software Bus Services

Layered Architecture Approach

Simulink to cFE FSW Process

Simulink Bus becomes cFE Message


```
'Ins_msg', ...

", ...

sprintf("), { ...

{'Ins_delta_velocity_counts', 3, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_delta_angle_counts', 3, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_status', 1, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_mode', 1, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_data', 1, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_counts', 3, 'int16', -1, 'real', 'Sample'}; ...

{'Ins_checksum', 1, 'int16', -1, 'real', 'Sample'}; ...
} ...
```


cFE Message Flow

cFE Interface App Loop

```
Struct App_Inputs In
Struct App_Outputs Out
App_Init() {
    Initialize_App_Inputs()
    Subscribe_SB_Msgs(Tick, AppMsgs,...)
    Simulink_Init(In, Out)
App_Main(){
    App_Init()
    while(1) {
           sb_receive_msg(msg, timeout)
           if (msg == tick) \{
                      Simulink_Step(dt, In, Out)
                      sb_send_msg(Out) /* app update */
           } else {
                      If (msg == app_update) /* Process other App Msgs */
                                  App_Update_Inputs(msg, Out)
                      else Process_Msg(msg) /* HK, Cmds, etc... */
```


New Efforts

- 3DOF Simulator
- Command & Telemetry Dictionary XTCE
- Performance / Latency Reduction
- cFE Interface Enhancements

Summary

- NASA Ames developing infrastructure for rapid flight software development
- Model based process leverages Mathworks Simulink, RTW-EC
- Developed modular approach to integrate auto-generated code with GSFC's cFE.
- Successfully demonstrated on HTV
- Being Utilized on NASA's LADEE mission

Backup

cFE IMU App Loop

```
IMU_Main(){
    while(1) {
          struct imu_input_str imu_in
           read_msg_que(imu_in, timeout) /* VxWorks Msg Que */
          sb_send_msg(imu_msg)
          Send tick()
Cnt = 0;
Send_tick() {
    sb_send_msg(400HZ_Tick) /* Do we need 400HZ Tick or key off of IMU Data? */
    if ((Cnt \% 2) == 0) sb_send_msg(200HZ_Tick)
    if ((Cnt \% 4) == 0) sb_send_msg(100HZ_Tick)
    if ((Cnt \% 40) == 0) sb_send_msg(10HZ_Tick)
    if ((Cnt % 400) == 0) sb_send_msg(1HZ_Tick)
    Cnt++;
/* Note: Other Apps same as IMU without the Send_tick() */
```


Workstation Simulation

Local Workstation

- •Simulink/SystemBuild Only (No Autocode)
- •Early in development process
- •Algorithm Development
- •Requirements Analysis

Processor-in-the-Loop Simulation

- •Models autocoded and running on RT processors
- •Inexpensive "flight-like" processor
- •Tests autocoding process & integration with C&DH software
- •Integration with Telemetry Software allows early development/testing of downlink
- •Can be used for initial code size and resource utilization analysis

22

Hardware-in-the-Loop Simulation

- •Flight code runs on Flight Avionics EDU
- •Provides testing of FSW with Avionics I/O
- Definitive answers on resource utilization
- •Highest fidelity simulations for verification/validation

Automatic Code Generation

- Simulink supports two way trace-ability between models and generated code
- Code Easy to read, well commented