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Comprehensive static analysis tools for increased efficiency
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Leverage static analysis components at critical points in the
workflow
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1. Repeatabllity 2. Faster delivery 3. Higher quality
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Successful use of tool suite at Volvo

Volvo Cars Software Factory Increases Pace and Quality of
Development with Polyspace
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With Polyspace, we can ensure software ou 'Tr%‘”* !!g : l—"‘;\ D TR
X < . 3 k - : oyl e eyimioionden Ao "“'i.' »re
se.curlty.a_nd quallt.y by identifying and 3! :.,l!_.‘ Tl e ﬁ
fixing critical run-time errors before every
code merge.” Volvo Cars uses Polyspace for static code checking

throughout the development lifecycle.
— Johannes Foufas, Volvo Cars

With the Polyspace as You Code plugin available in Polyspace Access™, several teams check adherence to CERT®
C, CERT C++, MISRA C®, and AUTOSAR C++14 coding guidelines while they are coding in their IDEs. Before
submitting their code modifications, developers run Polyspace Bug Finder™ and Polyspace Code Prover™ on their
local computers to prequalify their changes.

When developers push their changes to the source code repository, it automatically triggers Polyspace Bug Finder
Server™ and Polyspace Code Prover Server™ analysis. The Polyspace results are integrated into Gerrit to support
code reviews. The CI system employs strict gating: every proposed change is verified before a code merge and is
promoted into the central Git™ repository only if it meets safety and security requirements.
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Polyspace as You Code: static analysis integrated in your
environment
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*Polyspace as You Code is a feature of Polyspace Access 4
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First opportunity to fix bugs...

Kon demand. \
..w ...before committing.
Y- & .

..before running tests.

...while you remember the code.
...when it's easiest.

...when it's least expensive.
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Also supported:

\_ and custom integrations Y, + Help develop gOOd hablts
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Find Bugs and Enforce Coding Standards

“ Numerical % Data Flow % Good Practice
q Defect Types % Tainted Data < Concurrency < Performance
s Security s Static Memory % Resource Mgmt.
s Cryptography * Dynamic Memory % Programming
s MISRA C:2004 * MISRA C++:2008 % Naming Rules
Coding Standards % MISRA C:2012 % AUTOSAR C++-14 < JSF AV C++

 CERTC s CERT C++ “ ISO/IEC TS 17961
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Guidelines checks for software metrics

s Complexity % Paths, Inputs, Calls
‘ A * Recursions s Project

* Language Scope s File
Guidelines

* Function Coupling “ Function

» HIS



MathWorks AUTOMOTIVE CONFERENCE 2023

Configuration
= File based configuration can be centralized and shared across teams
= Can also import from Polyspace Desktop or use options text files

"' Checkers selection - O >
Defect
Select file C:\AEGPolyspace\paycDemo\whvciwfvc\PAYC_configuration\PAYC_checkers_config. xml || Browse J New ﬂ' Save Changes
m A | | Select rules in category:  [m] Al Default High [m]Medium [m]Low [m]CWE
~MNumerical
- Static memory Status Impact MName Com...
- Dynamic memary - [v] Numerical N
Data flow High Integer division by zero
- Resource management . High Float division by zero
--Programming - High Integer conversion overflow
--Ohject oriented Low Unsigned integer conversion overflow
-~ C4+ Exceptions - Medium Integer constant overflow
-Coneurrency Low Unsigned integer constant overflow
- Security - Medium 5ign change integer conversion overflow
--Cryptography - High Float conversion overflow
—Tainted data . Medium Integer overflow
--Good practice Low Unsigned integer overflow
Performance : Low Float overflow
[-MISRA C:2004 (0/132) - High Absorption of float operand
[]-MISRA AC AGC (0/130) - High Invalid use of standard library integer routine
[]-MISRA C:2012 (173/173) - High Invalid use of standard library floating point routine
[]-MISRA C++:2008 (0/212) - Low 5hift of a negative value
[]-JSF AV C++ (0/150) - Low Right operand of shift operation outside allowed bounds
[]-SEI CERTC (0/203) - Medium Use of plain char type for numeric value
[4-5EI CERT C++ (0/140) - Medium Bitwise operation on negative value
_____ ISO/IEC TS 17961 (46/46) - Low Integer precision exceeded
H-AUTOSAR C++14 (0/363) y Low Possible invalid operation on boolean operand "
| L Dracicinn lnee in intansr to fnst comuarsinn
Finish Cancel
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Polyspace as You Code for all the C[++] code you write

@ CERT C: Rule ARR38-C A +
) File Edit Selection View Go Run Terminal Help sut.c - PaYC_workflow - Visual Studio Code

(o4 B  © localhost
POLYSPACE C sutc X Help Center
v QUALITY MONITORING src > C sutc > QD cpy_data(BUF_MEM *)

Documentation

size_t max;
} BUF_MEM; Learn about CERT C: Rule ARR38-C
CheCkS, Why they Guarantee that library functior form invalid pointers
matter, and
Monitor findings cpy_data(BUF_MEM *alpha) examples with fixes

BUF_MEM beta;

Description

for key files as BUF_MEM *o0s = alpha;

Vv RESULT DETAILS
you code _
v ARR38-C Guarantee that library fu... + Mismatch between data length and size.

sut.c [77, 5] 1t 0x0) return 0 - EaSy Shortcuts for‘ + Invalid use of standard library memory routine.

+ Possible misuse of sizeof.

Data size argument to ‘'memcpy’ is n... B d etal IS an d | n —C o d e + Buffer overflow from incorrect string format specifier.
SEI CERT C:ARR38-C - Invalid use of standard library string routine

> I * \J 0s— J u Stlfl C atl O n + Destination buffer overflow in string manipulation.

« Destination buffer underflow in string manipulation.

num, length;

= Traceback

See finding

details with a return(1); Show details abr-_. 521 CERT C:ARR38-C finding

v Mismatch between data length and size
\ BASELINE <

Justify SEI CERT C:ARR38-C with annotation
traceback [E] Mode: Show local findings only Issue

absolute_difference(int32_t x, int32_t y); S
absolute_difference(int32_t x, int32_t y)

Examples

nipulate the data buffer or length argument, the attacker can cause buffer ov
length

1RE320 £ Lxs
Also supported: if (x > vy)
{ 2 SSL Heartbleed bug
v, R - PN kI S HE fnnda rand /
ll v CONFIGURATION —PROBLEMS 22 ' ‘ LGB BRSSO /node_moc S/ or manipulating m pute the length argument direct he data so that
DCLOO0-C Const-qualify immutable objects polyspace(SElI CERT ( LOO- Lr ( 14 Example - Copy Bu

(=] Build setting: Build options file not req... ) )
INTOO-C Understand the data model used by your implementation(s) |

G EXP19-C Use braces for the body of an if, for, or while statement pol
= Checkers file: my_payc_default.xml ) )
INTOO-C Understand the data model used by your implementation(s) f
EXP39-C Do not access a variable through a pointer of an incompatible type
ARR38-C Guarantee that library functions do not form invalid pointers polyspace( RR38-C) [Ln 77, Col 5] extern BUF_MEM beta;
and custom Non-initialized variable |

Integrations R T T T




Fast local analysis on save and on-demand

overall  Find All References Shift+Alt+F12
yprintf("-------
if (overall_status == Rename Symbol 2

Change All Occurrences Ctrl+F2
Format Document Shift+Alt+F

printf("LargeArra) Format Document With...
pl"il'lt'F "\n™) - Cut Ctrl+X
Copy Cirl+C

Paste Ctrl+V

Switch Header/Source Alt+0
PROBLEMS (4
- Go to Symbol in Editor... Ctrl+Shift+0O
test driver.c |4

Go to Symbol in Workspace... Ctrl+T
Vulnerable pseudo-random nun .

 —————————————————————— Add files to the
Dead code pol [Defect:D Run Code Analysis on Active File quality monitoring
17.7 The value returned by a fur  Regtart IntelliSense for Active File SUEYY panel for continuous
17.7 The value returned by a fur Add Debug Configuration (Mg observation

Add file to the Polyspace Quality Monitoring list

Run ad-hoc analysis Run Polyspace Analysis Ctrl+Shift+Alt+A

when you need it Open Polyspace Documentation

C nand Palette... Ctrl+Shi .
Command Palette trl+Shift+P 5 Spaces:2 UTF8 CRLE C Wwini2 & 0

MathWorks AUTOMOTIVE CONFERENCE 2023
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Productivity enhancing auto-fix feature

unused_header.h test_driver.c

test_driver.c > ...

B nclude "header_file.h"
#include "unused_header.h"

Auto-fix options for
straightforward
corrections

® Show details about Defect:USELESS_INCLUDE finding
Justify Defect:USELESS_INCLUDE with annotation
Justify all Defect:USELESS_INCLUDE findings in this file with annotation
Fix USELESS_INCLUDE: comment out useless #include directive.
Fix all USELESS_INCLUDE instances in current file: comment out use!_Js #inclu...
Fix USELESS_INCLUDE: remove useless #include directive..

Fix all USELESS_INCLUDE instances in current file: remove useless #include dir...

PROBLEMS 12 OUTPUT

v test_driver.c (11
3.1 The character sequences /* and // shall not be used within a comment.
® Useless include p¢ (Defect:USELESS_INCLUDE) [Ln 20, Col 1]
Useless include p ct:USE IDE) [Ln 1]

338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

676 Use of Potentially Dangerous Function [Ln 64,
Dead code

571 Expression is Always True

570 Expression is Always False

561 Dead Code

11
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Demo

Come by the booth or visit our website

12
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Get Polyspace as You Code

= https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC Installer
win64.zip

= https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC Installer g
Inxa64.zip

13


https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC_Installer_win64.zip
https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC_Installer_win64.zip
https://www.mathworks.com/downloads/csd/Polyspace/22b/PaYC_Installer_glnxa64.zip
https://www.mathworks.com/downloads/csd/Polyspace/22b/PaYC_Installer_glnxa64.zip
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Training: Polyspace for C/C++ Code Verification

After this 2-day course you will be able to:

- Create a verification project , — e
- Review verification results g g e
() v = b[3]; else if(z == 7)
- Emulate target execution environments oe Les = 7 S sl
{ }
- Handle missing functions and data . e a
- Manage unproven code }
1 le g turn (res/z )

= Apply MISRA-C® rules

= Report verification results via Polyspace Access

Upcoming offerings: May 2-3, June 22-23

14
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