MathWorks
AUTOMOTIVE
CONFERENCE 2023
North America

Find C/C++ Bugs as You Code
Integrate Polyspace into Your IDE

John Boyd, MathWorks

/)\ MathWorks’



MathWorks AUTOMOTIVE CONFERENCE 2023

Comprehensive static analysis tools for increased efficiency

‘ ﬂ \ Automate with ClI
Workflows

AR —e

Catch and fix bugs Q' Collaborate with
while you code A0 Team Members



MathWorks AUTOMOTIVE CONFERENCE 2023

Leverage static analysis components at critical points in the
workflow

g @ —B— X

Code Check-in Code Release
Review Repository Build

~—
B, —
8_

Integration
Test

@ —p Release

Quiality
Gate

1. Repeatabllity 2. Faster delivery 3. Higher quality



MathWorks AUTOMOTIVE CONFERENCE 2023

Successful use of tool suite at Volvo

Volvo Cars Software Factory Increases Pace and Quality of
Development with Polyspace

i eI il RIS
With Polyspace, we can ensure software ou 'Tr%‘”* !!g : l—"‘;\ D TR
X < . 3 k - : oyl e eyimioionden Ao "“'i.' »re
se.curlty.a_nd quallt.y by identifying and 3! :.,l!_.‘ Tl e ﬁ
fixing critical run-time errors before every
code merge.” Volvo Cars uses Polyspace for static code checking

throughout the development lifecycle.
— Johannes Foufas, Volvo Cars

With the Polyspace as You Code plugin available in Polyspace Access™, several teams check adherence to CERT®
C, CERT C++, MISRA C®, and AUTOSAR C++14 coding guidelines while they are coding in their IDEs. Before
submitting their code modifications, developers run Polyspace Bug Finder™ and Polyspace Code Prover™ on their
local computers to prequalify their changes.

When developers push their changes to the source code repository, it automatically triggers Polyspace Bug Finder
Server™ and Polyspace Code Prover Server™ analysis. The Polyspace results are integrated into Gerrit to support
code reviews. The CI system employs strict gating: every proposed change is verified before a code merge and is
promoted into the central Git™ repository only if it meets safety and security requirements.



| MathWorks AUTOMOTIVE CONFERENCE 2023

Polyspace as You Code: static analysis integrated in your
environment

Quiality
Review Results / Collaborate Monitoring

R Team

- Review

v

Polyspace
Access
Developer

4 \ '4

Polyspace Code

s \\/~ o . K bl Prover Server
§= X [[EF —=— = —
& — g v — Polyspace Bug

—
Polyspace as :
. . _ Finder S :
Build Test Code Build Test — Quiality
Repository Analyze Code Gate
\ J |\ J
Component & other local workflows Continuous Integration automations

*Polyspace as You Code is a feature of Polyspace Access 4



MathWorks AUTOMOTIVE CONFERENCE 2023

First opportunity to fix bugs...

Kon demand. \
..w ...before committing.
Y- & .

..before running tests.

...while you remember the code.
...when it's easiest.

...when it's least expensive.

4 )

Also supported:

\_ and custom integrations Y, + Help develop gOOd hablts

o /




MathWorks AUTOMOTIVE CONFERENCE 2023

Find Bugs and Enforce Coding Standards

“ Numerical % Data Flow % Good Practice
q Defect Types % Tainted Data < Concurrency < Performance
s Security s Static Memory % Resource Mgmt.
s Cryptography * Dynamic Memory % Programming
s MISRA C:2004 * MISRA C++:2008 % Naming Rules
Coding Standards % MISRA C:2012 % AUTOSAR C++-14 < JSF AV C++

 CERTC s CERT C++ “ ISO/IEC TS 17961



MathWorks AUTOMOTIVE CONFERENCE 2023

Guidelines checks for software metrics

s Complexity % Paths, Inputs, Calls
‘ A * Recursions s Project

* Language Scope s File
Guidelines

* Function Coupling “ Function

» HIS



MathWorks AUTOMOTIVE CONFERENCE 2023

Configuration
= File based configuration can be centralized and shared across teams
= Can also import from Polyspace Desktop or use options text files

"' Checkers selection - O >
Defect
Select file C:\AEGPolyspace\paycDemo\whvciwfvc\PAYC_configuration\PAYC_checkers_config. xml || Browse J New ﬂ' Save Changes
m A | | Select rules in category:  [m] Al Default High [m]Medium [m]Low [m]CWE
~MNumerical
- Static memory Status Impact MName Com...
- Dynamic memary - [v] Numerical N
Data flow High Integer division by zero
- Resource management . High Float division by zero
--Programming - High Integer conversion overflow
--Ohject oriented Low Unsigned integer conversion overflow
-~ C4+ Exceptions - Medium Integer constant overflow
-Coneurrency Low Unsigned integer constant overflow
- Security - Medium 5ign change integer conversion overflow
--Cryptography - High Float conversion overflow
—Tainted data . Medium Integer overflow
--Good practice Low Unsigned integer overflow
Performance : Low Float overflow
[-MISRA C:2004 (0/132) - High Absorption of float operand
[]-MISRA AC AGC (0/130) - High Invalid use of standard library integer routine
[]-MISRA C:2012 (173/173) - High Invalid use of standard library floating point routine
[]-MISRA C++:2008 (0/212) - Low 5hift of a negative value
[]-JSF AV C++ (0/150) - Low Right operand of shift operation outside allowed bounds
[]-SEI CERTC (0/203) - Medium Use of plain char type for numeric value
[4-5EI CERT C++ (0/140) - Medium Bitwise operation on negative value
_____ ISO/IEC TS 17961 (46/46) - Low Integer precision exceeded
H-AUTOSAR C++14 (0/363) y Low Possible invalid operation on boolean operand "
| L Dracicinn lnee in intansr to fnst comuarsinn
Finish Cancel




MathWorks AUTOMOTIVE CONFERENCE 2023

Polyspace as You Code for all the C[++] code you write

@ CERT C: Rule ARR38-C A +
) File Edit Selection View Go Run Terminal Help sut.c - PaYC_workflow - Visual Studio Code

(o4 B  © localhost
POLYSPACE C sutc X Help Center
v QUALITY MONITORING src > C sutc > QD cpy_data(BUF_MEM *)

Documentation

size_t max;
} BUF_MEM; Learn about CERT C: Rule ARR38-C
CheCkS, Why they Guarantee that library functior form invalid pointers
matter, and
Monitor findings cpy_data(BUF_MEM *alpha) examples with fixes

BUF_MEM beta;

Description

for key files as BUF_MEM *o0s = alpha;

Vv RESULT DETAILS
you code _
v ARR38-C Guarantee that library fu... + Mismatch between data length and size.

sut.c [77, 5] 1t 0x0) return 0 - EaSy Shortcuts for‘ + Invalid use of standard library memory routine.

+ Possible misuse of sizeof.

Data size argument to ‘'memcpy’ is n... B d etal IS an d | n —C o d e + Buffer overflow from incorrect string format specifier.
SEI CERT C:ARR38-C - Invalid use of standard library string routine

> I * \J 0s— J u Stlfl C atl O n + Destination buffer overflow in string manipulation.

« Destination buffer underflow in string manipulation.

num, length;

= Traceback

See finding

details with a return(1); Show details abr-_. 521 CERT C:ARR38-C finding

v Mismatch between data length and size
\ BASELINE <

Justify SEI CERT C:ARR38-C with annotation
traceback [E] Mode: Show local findings only Issue

absolute_difference(int32_t x, int32_t y); S
absolute_difference(int32_t x, int32_t y)

Examples

nipulate the data buffer or length argument, the attacker can cause buffer ov
length

1RE320 £ Lxs
Also supported: if (x > vy)
{ 2 SSL Heartbleed bug
v, R - PN kI S HE fnnda rand /
ll v CONFIGURATION —PROBLEMS 22 ' ‘ LGB BRSSO /node_moc S/ or manipulating m pute the length argument direct he data so that
DCLOO0-C Const-qualify immutable objects polyspace(SElI CERT ( LOO- Lr ( 14 Example - Copy Bu

(=] Build setting: Build options file not req... ) )
INTOO-C Understand the data model used by your implementation(s) |

G EXP19-C Use braces for the body of an if, for, or while statement pol
= Checkers file: my_payc_default.xml ) )
INTOO-C Understand the data model used by your implementation(s) f
EXP39-C Do not access a variable through a pointer of an incompatible type
ARR38-C Guarantee that library functions do not form invalid pointers polyspace( RR38-C) [Ln 77, Col 5] extern BUF_MEM beta;
and custom Non-initialized variable |

Integrations R T T T




Fast local analysis on save and on-demand

overall  Find All References Shift+Alt+F12
yprintf("-------
if (overall_status == Rename Symbol 2

Change All Occurrences Ctrl+F2
Format Document Shift+Alt+F

printf("LargeArra) Format Document With...
pl"il'lt'F "\n™) - Cut Ctrl+X
Copy Cirl+C

Paste Ctrl+V

Switch Header/Source Alt+0
PROBLEMS (4
- Go to Symbol in Editor... Ctrl+Shift+0O
test driver.c |4

Go to Symbol in Workspace... Ctrl+T
Vulnerable pseudo-random nun .

 —————————————————————— Add files to the
Dead code pol [Defect:D Run Code Analysis on Active File quality monitoring
17.7 The value returned by a fur  Regtart IntelliSense for Active File SUEYY panel for continuous
17.7 The value returned by a fur Add Debug Configuration (Mg observation

Add file to the Polyspace Quality Monitoring list

Run ad-hoc analysis Run Polyspace Analysis Ctrl+Shift+Alt+A

when you need it Open Polyspace Documentation

C nand Palette... Ctrl+Shi .
Command Palette trl+Shift+P 5 Spaces:2 UTF8 CRLE C Wwini2 & 0

MathWorks AUTOMOTIVE CONFERENCE 2023

10



MathWorks AUTOMOTIVE CONFERENCE 2023

Productivity enhancing auto-fix feature

unused_header.h test_driver.c

test_driver.c > ...

B nclude "header_file.h"
#include "unused_header.h"

Auto-fix options for
straightforward
corrections

® Show details about Defect:USELESS_INCLUDE finding
Justify Defect:USELESS_INCLUDE with annotation
Justify all Defect:USELESS_INCLUDE findings in this file with annotation
Fix USELESS_INCLUDE: comment out useless #include directive.
Fix all USELESS_INCLUDE instances in current file: comment out use!_Js #inclu...
Fix USELESS_INCLUDE: remove useless #include directive..

Fix all USELESS_INCLUDE instances in current file: remove useless #include dir...

PROBLEMS 12 OUTPUT

v test_driver.c (11
3.1 The character sequences /* and // shall not be used within a comment.
® Useless include p¢ (Defect:USELESS_INCLUDE) [Ln 20, Col 1]
Useless include p ct:USE IDE) [Ln 1]

338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

676 Use of Potentially Dangerous Function [Ln 64,
Dead code

571 Expression is Always True

570 Expression is Always False

561 Dead Code

11



MathWorks AUTOMOTIVE CONFERENCE 2023

Demo

Come by the booth or visit our website

12



MathWorks AUTOMOTIVE CONFERENCE 2023

Get Polyspace as You Code

= https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC Installer
win64.zip

= https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC Installer g
Inxa64.zip

13


https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC_Installer_win64.zip
https://www.mathworks.com/downloads/csd/Polyspace/23a/PaYC_Installer_win64.zip
https://www.mathworks.com/downloads/csd/Polyspace/22b/PaYC_Installer_glnxa64.zip
https://www.mathworks.com/downloads/csd/Polyspace/22b/PaYC_Installer_glnxa64.zip

MathWorks AUTOMOTIVE CONFERENCE 2023

Training: Polyspace for C/C++ Code Verification

After this 2-day course you will be able to:

- Create a verification project , — e
- Review verification results g g e
() v = b[3]; else if(z == 7)
- Emulate target execution environments oe Les = 7 S sl
{ }
- Handle missing functions and data . e a
- Manage unproven code }
1 le g turn (res/z )

= Apply MISRA-C® rules

= Report verification results via Polyspace Access

Upcoming offerings: May 2-3, June 22-23

14



	Slide 0
	Slide 1: Comprehensive static analysis tools  for increased efficiency
	Slide 2
	Slide 3: Successful use of tool suite at Volvo
	Slide 4: Polyspace as You Code: static analysis integrated in your environment
	Slide 5: First opportunity to fix bugs…
	Slide 6: Find Bugs and Enforce Coding Standards 
	Slide 7: Guidelines checks for software metrics 
	Slide 8: Configuration
	Slide 9: Polyspace as You Code for all the C[++] code you write
	Slide 10: Fast local analysis on save and on-demand
	Slide 11: Productivity enhancing auto-fix feature
	Slide 12: Demo  Come by the booth or visit our website  
	Slide 13: Get Polyspace as You Code
	Slide 14: Training: Polyspace for C/C++ Code Verification

